19 May 2008

Data Mining

Pendahuluan Perkembangan data mining(DM) yang pesat tidak dapat lepas dari perkembangan teknologi informasi yang memungkinkan data dalam jumlah besar terakumulasi. Sebagai contoh, toko swalayan merekam setiap penjualan barang dengan memakai alat POS(point of sales). Database data penjualan tsb. bisa mencapai beberapa GB setiap harinya untuk sebuah jaringan toko swalayan berskala nasional. Perkembangan internet juga punya andil cukup besar dalam akumulasi data. Tetapi pertumbuhan yang pesat dari akumulasi data itu telah menciptakan kondisi yang sering disebut sebagai rich of data but poor of information karena data yang terkumpul itu tidak dapat digunakan untuk aplikasi yang berguna. Tidak jarang kumpulan data itu dibiarkan begitu saja seakan-akan kuburan data (data tombs). Investasi yang besar di bidang IT untuk mengumpulkan data berskala besar ini perlu dijustifikasi dengan didapatnya nilai tambah dari kumpulan data ini.,

Kebutuhan dari dunia bisnis yang ingin memperoleh nilai tambah dari data yang telah mereka kumpulkan telah mendorong penerapan teknik-teknik analisa data dari berbagai bidang seperti statistik, kecerdasan buatan dsb pada data berskala besar itu. Ternyata penerapan pada data berskala besar memberikan tantangan-tantangan baru yang akhirnya memunculkan metodologi baru yang disebut data mining ini. Bermula dari penerapan di dunia bisnis, sekarang ini data mining juga diterapkan pada bidang-bidang lain yang memerlukan analisa data berskala besar seperti bioinformasi dan pertahanan negara.

Dalam tulisan ini, penulis mencoba memperkenalkan data mining dengan membandingkannya dengan bidang ilmu yang sudah ada, dan juga memberikan beberapa ilustrasi tentang teknik-teknik yang umum dipakai di data mining,

Definisi
Ada beberapa definisi dari data mining yang dikenal di buku-buku teks data mining. Diantaranya adalah :

* Data mining adalah serangkaian proses untuk menggali nilai tambah dari suatu kumpulan data berupa pengetahuan yang selama ini tidak diketahui secara manual.

* Data mining adalah analisa otomatis dari data yang berjumlah besar atau kompleks dengan tujuan untuk menemukan pola atau kecenderungan yang penting yang biasanya tidak disadari keberadaannya

Menarik untuk diingat bahwa kata mining sendiri berarti usaha untuk mendapatkan sedikit barang berharga dari sejumlah besar material dasar. Dari definisi-definisi itu, dapat dilihat ada beberapa faktor yang mendefinisikan data mining :

1. data mining adalah proses otomatis terhadap data yang dikumpulkan di masa lalu
2. objek dari data mining adalah data yang berjumlah besar atau kompleks
3. tujuan dari data mining adalah menemukan hubungan-hubungan atau pola-pola yang mungkin memberikan indikasi yang bermanfaat

Sejarah Data mining bukanlah suatu bidang yang sama sekali baru. Salah satu kesulitan untuk mendefinisikan data mining adalah kenyataan bahwa data mining mewarisi banyak aspek dan teknik dari bidang-bidang ilmu yang sudah mapan terlebih dulu. Gambar 1 menunjukkan bahwa data mining memiliki akar yang panjang dari bidang ilmu seperti kecerdasan buatan (artificial intelligent), machine learning, statistic, database dan juga information retrieval.

Beberapa teknik yang sering disebut-sebut dalam literatur data mining seperti classification, neural network, genetic algorithm dll. sudah lama dikenal di dunia kecerdasan buatan. Statistik memberikan kontribusi pada data mining dengan teknik-teknik untuk menyeleksi data dan evaluasi hasil data mining selain teknik-teknik data mining seperti clustering. Yang membedakan persepsi terhadap data mining adalah perkembangan teknik-teknik data mining untuk aplikasi pada database skala besar. Sebelum populernya data mining, teknik-teknik tersebut pada umunya diterapkan untuk data skala kecil saja. Selain itu beberapa teknik dari bidang database untuk transformasi data juga merupakan bagian integral dari proses data mining.

Akhir-akhir ini ada beberapa bidang ilmu seperti information retrieval yang juga terlibat dalam proses data mining untuk mengekstrak sumber data bagi data mining dari sumber-sumber seperti teks dan website. Walaupun data mining memiliki sumber dari beberapa bidang ilmu, data mining berbeda dalam beberapa aspek dibandingkan dengan bidang ilmu seperti berikut :

* statistik : model statistik dipersiapkan oleh para ahli statistik, sedangkan data mining mengembangkan statistik untuk menangani data berjumlah besar secara otomatis -
* expert system (sistem cerdas) : model pada expert system dibuat berupa aturan-aturan berdasar pada pengalaman-pengalaman para ahli
* data warehouse (DWH) : sering terjadi kerancuan antara data mining dan data warehouse karena keduanya sering dipakai bersamaan. Pada umumnya data warehouse lebih merujuk pada tempat untuk menyimpan data yang terkonsolidasi sedangkan data mining bisa dianggap sebagai perkakas untuk menganalisa otomatis nilai dari data itu
* OLAP : seperti data warehouse, OLAP juga sering dibahas bersama data mining. Tetapi OLAP memiliki tujuan untuk memastikan hipotesa yang sudah diformulasikan terlebih dulu oleh penggunanya.

No comments: