Secara umum, data mining dapat melakukan dua hal : memberikan kesempatan untuk menemukan informasi menarik yang tidak terduga, dan juga bisa menangani data berskala besar.
Dalam menemukan informasi yang menarik ini, ciri khas data mining adalah kemampuan pencarian secara hampir otomatis. Mengapa disebut hampir otomatis karena dalam banyak teknik data mining ada beberapa parameter yang masih harus ditentukan secara manual atau semi manual. Penelitian untuk melakukan setting secara adaptif merupakan bidang yang hangat diteliti. Data mining juga dapat memanfaatkan pengalaman atau bahkan kesalahan di masa lalu untuk meningkatkan kualitas dari model maupun hasil analisanya, salah satunya dengan kemampuan pembelajaran yang dimiliki beberapa teknik data mining seperti klasifikasi.
Kemampuan data mining untuk menangani data dalam jumlah besar memungkinkan data mining diterapkan pada masalah-masalah kompleks yang ukurannya tidak dibatasi lagi oleh otak manusia. Selain itu penelitian tentang algoritma parallel dari data mining juga membuka jalan agar data mining dapat diterapkan pada program skala yang lebih besar lagi.
Sebaliknya, ada beberapa hal yang tidak bisa dilakukan oleh data mining. Yang pertama perlu disadari adalah data mining bukanlah solusi yang cocok untuk setiap masalah. Ada banyak masalah yang justru lebih baik diselesaikan dengan statistic yang sederhana. Selain itu, data mining juga tidak bisa menemukan pengetahuan yang bermanfaat secara instan. Dalam tahapan-tahapan dari proses data mining yang sudah kita bahas, seorang analis data mining perlu tahu perbedaan, kelebihan dan kekurangan dari teknik-teknik data mining yang ada sebelumnya mengaplikasikan yang paling cocok untuk masalah yang dihadapinya. Ketika menjalankan teknik data mining itu sendiri, si analis juga perlu mengarahkan programnya dengan melakukan persiapan-persiapan dan pemilihan parameternya. Setelah data mining dilaksanakan pun si analis harus melakukan evaluasi terhadap pola-pola yang dihasilkan sebelumnya bisa merumuskan hasilnya. Terakhir perlu diingat bahwa data mining tidak bisa memberikan hasil yang bisa langsung digunakan. Banyak hasil dari data mining yang tidak bisa langsung diinterpretasikan dengan mudah. Masih banyak juga teknik-teknik data mining yang belum memiliki teknik baku untuk menilai seberapa besar manfaat dari pola yang ditemukan. Karenanya untuk penilaian hasil data mining masih perlu dilakukan secara manual. Yang menjadi masalah untuk melakukan penilaian pun diperlukan tenaga terlatih karena algoritma data mining cukup kompleks. Hal-hal ini juga disadari oleh perusahaan-perusahaan yang menerapkan data mining dan OLAP, yang sering dirangkum dalam istilah business intelligence (BI). Untuk memecahkan masalah ini, mulai banyak perusahaan yang membuat pusat untuk business intelligence yang membantu karyawan biasa untuk menggunakan piranti OLAP maupun data mining dengan menyediakan pelatihan dan informasi praktis pemakaian dan aplikasi hasilnya.
19 May 2008
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment